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Abstract. Data analysts commonly utilize statistics to summarize large
datasets. While it is often sufficient to explore only the summary statis-
tics of a dataset (e.g., min/mean/max), Anscombe’s Quartet demon-
strates how such statistics can be misleading. Graph mining has a sim-
ilar problem in that graph statistics (e.g., density, connectivity, cluster-
ing coefficient) may not capture all of the critical properties of a given
graph. To study the relationships between different graph properties and
statistics, we examine all small non-isomorphic graphs and provide a sim-
ple visual analytics system to explore correlations across multiple graph
properties. However, for graphs with more than ten nodes, generating
the entire space of graphs becomes quickly intractable. We use different
random graph generation methods to further look into the distribution
of graph statistics for higher order graphs and investigate the impact of
various sampling methodologies. We also describe a method for gener-
ating many graphs that are identical over a number of graph properties
and statistics yet are clearly different and identifiably distinct.
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1 Introduction

Fig. 1. Anscombe’s quartet: all four
datasets have the same mean and st. devi-
ation in x and y and (x, y)-correlation.

Statistics are often used to summa-
rize a large dataset. In a way, one
hopes to find the “most important”
statistics that capture one’s data. For
example, when comparing two coun-
tries, we often specify the population
size, GDP, employment rate, etc. The
idea is that if two countries have a
“similar” statistical profile, they are
similar (e.g., France and Germany
have a more similar demographic pro-
file than France and USA). However,
Anscombe’s quartet [3] convincingly
illustrates that datasets with the same values over a limited number of sta-
tistical properties, can be fundamentally different – a great argument for the
need to visualize the underlying data; see Fig. 1.
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Fig. 2. These four graphs share the same 5 common
statistics: number of vertices |V | = 12, number of
edges |E| = 21, number of triangles | 4 | = 10, girth
= 3 and global clustering coefficient GCC= 0.5. How-
ever, structurally the graphs are very different: three
of the graphs are planar and the fourth one is not,
some show regular patterns and are symmetric, oth-
ers are not. Finally, one of the graphs is disconnected,
another is 1-connected and the rest are 2-connected.

Similarly, in the graph
analytics community, a va-
riety of statistics are being
used to summarize graphs,
such as graph density, aver-
age path length, global clus-
tering coefficient, etc. How-
ever, summarizing a graph
with a fixed set of graph
statistics leads to the prob-
lem illustrated by Anscombe.
It is easy to construct sev-
eral graphs that have the
same basis statistics (e.g.,
number of vertices, number
of edges, number of trian-
gles, girth, clustering coef-
ficient) while the underly-
ing graphs are clearly dif-
ferent and identifiably dis-
tinct; see Fig. 2. From a
graph theoretical point of
view these graphs are very
different: they differ in con-
nectivity (from 2-connected,
to 1-connected, to discon-
nected), in planarity, symme-
try, and in other structural
properties.

Recently, Matejka and Fitzmaurice [30] proposed a dataset generation method
that can modify a given 2-dimensional point set (like the ones in Anscombe’s
quartet) while preserving its summary statistics but significantly changing its
visualization (what they call “graph”). Given the graphs in Fig. 2, we consider
whether it is also possible to modify a given graph and preserve a given set of
summary statistics while significantly change other graph properties and statis-
tics. Note that the problem is much easier for 2D point sets and basic statistics,
such as mean, deviation and correlation, than for graphs where many graph
properties are structurally correlated (e.g., diameter and average path length).
With this in mind, we first consider how can we fix a few graph statistics (such
as number of nodes, number of edges, number of triangles) and vary another
statistic (such as clustering coefficient or connectivity). We find that there is a
spectrum of possibilities: sometimes the “unrestricted” statistic can vary dramat-
ically, sometimes not, and the outcome depends on two issues: (1) the inherent
correlation between some statistics (e.g., density and number of triangles), and;
(2) the bias in graph generators.
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We begin by studying the correlation between graph summary statistics
across the set of all non-isomorphic graphs with up to 10 vertices. The statistical
properties derived for all graphs for a fixed number of vertices provide further
information about certain “restrictions.” In other words, the range of one statis-
tic may be restricted if another statistical property is fixed. However, we cannot
explore the entire space of graph statistics and correlations. As the number
of vertices grows, the number of different non-isomorphic graphs grows super-
exponentially. For |V | = 1, 2 . . . 9 the numbers are 1, 2, 4, 11, 34, 156, 1044, 12346,
274668, but already for |V | = 16 we have 6× 1022 non-isomoprhic graphs.

To go beyond ten vertices we use graph generators based on classic models,
such as Erdös-Rényi and Watts-Strogatz. However, different graph generators
have different biases and these can significantly impact the results. We study
the extent to which sampling using random generators can represent the whole
graph set for an arbitrary number of vertices with respect to their coverage of
the graph statistics. One way to evaluate the performance of random generators
is based on the ground-truth graph sets that are available: all non-isomorphic
graphs for |V | ≤ 10 vertices. If we randomly generate a small set of graphs (also
for |V | ≤ 10 vertices) using a given graph generator, we can explore how well
the sample and generator cover the space of graph statistics. In this way, we can
begin exploring the issues of “same stats, different graphs” for larger graphs.

All data and tools are available at http://vader.lab.asu.edu/GraphAnalytics/.
In particular, we have a basic visual analytics system and basic exploration tools
for the space of all small non-isomorphic graphs and sampled larger graphs. We
also include a generator for “same stats, different graphs,” i.e., multiple graphs
that are identical over a number of graph statistics, yet are clearly different.

2 Related Work

We briefly review the graph mining literature, paying special attention to the
commonly collected graph statistics. We also consider different graph generators.

Graph Statistics: Graph mining is applied in different domains from bioin-
formatics and chemistry, to software engineering and social science. Essential to
graph mining is the efficient collection of various graph properties and statistics
that can provide useful insight about the structural properties of a graph. A
review of recent graph mining systems identified some of the most frequently
extracted statistics. We list those, along with their definitions, in Table 1. These
properties range from basic, e.g., vertex count and edge count, to complex, e.g.,
clustering coefficients and average path length. Many of them can be used to
derive further properties and statistics. For example, graph density can be deter-
mined directly as the ratio of the number of edges |E| to the maximum number of
edges possible |V |× (|V |−1)/2, and real-world networks are often found to have
a low graph density [32]. Node connectivity and edge connectivity measures may
be used to describe the resilience of a network [8, 28], and graph diameter [22]
captures the maximum among all pairs of shortest paths [2, 7].

Other graph statistics measure how tightly nodes are grouped in a graph. For
example, clustering coefficients have been used to describe many real-world net-
works, and can be measured locally and globally. Nodes in a highly connected
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Table 1. The set of graph statistics considered in this paper.

Name Formula Reference

Average Clustering
Coefficient

ACC(G) = 1
n

∑n
i=1 c(ui), ui ∈ V, n = |V |

[10, 26, 24, 9, 33]
c(v) = |{(u,w)|u,w∈Γ (v),(u,w)∈E}|

|Γ (v)|(|Γ (v)|−1)/2
, v, u, w ∈ V

Global Clustering
Coefficient GCC(G) = 3×|triangles|

|connected triples| in the graph
[9, 24]

Square Clustering SCC(G) =
∑kv

u=1

∑kv
w=u+1 qv(u,w)∑kv

u=1

∑kv
w=u+1[av(u,w)+qv(u,w)]

[27]

Average Path Length APL = ave{ n−1∑
v∈V d(u,v),u6=v } [10, 26, 9, 33]

Degree Assortativity r =
∑

xy xy(exy−axby)
σaσb

[35, 33]

Diameter diam(G) = max{dist(v, w), v, w ∈ V } [10, 31, 24, 33]

Density den = 2|E|
|V |(|V |−1)

Ratio of Triangles Rt = |triangles|
|V |(|V |−1)/2

Node Connectivity
Cv: the minimum number of nodes to remove
to disconnect the graph

[16]

Edge Connectivity
Ce: the minimum number of edges to remove
to disconnect the graph

[16]

clique tend to have a high local clustering coefficient, and a graph with clear
clustering patterns will have a high global clustering coefficient [17, 18, 25, 36].
Studies have shown that the global clustering coefficient has been found to be
nearly always larger in real-world graphs than in Erdös-Rényi graphs with the
same number of vertices and edges [9, 36, 41], and a small-world network should
have a relatively large average clustering coefficient [11, 14, 43]. The average path
length (APL) is also of interest; small-world networks have APL that is loga-
rithmic in the number of vertices, while real-world networks have small (often
constant) APL [11, 14, 36, 41–43].

Degree distribution is one frequently used property describing the graph de-
gree statistics. Many real-world networks, including communication, citation,
biological and social networks, have been found to follow a power-law shaped
degree distribution [5, 9, 36]. Other real world networks have been found to follow
an exponential degree distribution [20, 39, 44]. Degree assortativity is of particu-
lar interest in the study of social networks and is calculated based on the Pear-
son correlation between the vertex degrees of connected pairs [34]. A random
graph generated by Erdös-Rényi model has an expected assortative coefficient
of 0. Newman [34] extensively studied assortativity in real-world networks and
found that social networks are often assortative (positive Assortativity), i.e.,
vertices with a similar degree preferentially connect together, whereas techno-
logical and biological networks tend to be disassortative (negative Assortativity)
implying that vertices with a smaller degree tend to connect to high degree ver-
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tices. Assortativity has been shown to affect clustering [29], resilience [34], and
epidemic-spread [6] in networks.

Graph Generators: Basic graph statistics have been used to describe various
classes of graphs (e.g., geometric, small-world, scale-free) and a variety of algo-
rithms have been developed to automatically generate graphs that mimic these
various properties. Charkabati et al. [10] divide graph models and generators
into four broad categories:

1. Random Graph Models: The graphs are generated by a random process.
2. Preferential Attachment Models: In these models, the “rich get richer,” as

the network grows, leading to power law effects.
3. Optimization-Based Models: Here, power laws are shown to evolve when

risks are minimized using limited resources.
4. Geographical Models: These models consider the effects of geography (i.e.,

the positions of the nodes) on the topology of the network. This is relevant
for modeling router or power grid networks.

The Erdös-Rényi (ER) network model is a simple graph generation model [9]
that generates graphs either by choosing a network randomly with equal prob-
ability from a set of all possible networks of size |V | with |E| edges [19] or by
creating each possible edge of a network with |V | vertices with a given probabil-
ity p [15]. The latter process gives a binomial degree distribution and it can be
approximated with a Poisson distribution. It is also possible to create networks
where the degree follows other common probability distributions, such as expo-
nential [12] or Gaussian [23]. Networks with any given degree sequence can be
generated using the configuration model [36].

Watts and Strogatz [43] developed the classical approach for generating
small-world graphs. This model could create disconnected graphs, but the vari-
ation suggested by Newman and Watts [37] generates connected graphs. Models
have also been proposed for generating synthetic scale-free networks with a vary-
ing scaling exponent(γ). The first scale-free directed network model was given
by de Solla Price [38]. Barabasi and Albert (BA) [4] described another popular
network model for generating undirected networks. It is a network growth model
in which each added vertex has a fixed number of edges |E|, and the probability
of each edge connecting to an existing vertex v is proportional to the degree of
v. Dorogovtsev et al. [13] and Albert and Barabasi [1] also developed a variation
of the BA model with a tunable scaling exponent.

3 Preliminary Experiments and Findings

In a recent study of the ability to perceive different graph properties (e.g., edge
density, clustering coefficient) in different types of graph layouts (e.g., force-
directed, circular) we generated a large number of graphs with 100 vertices.
Specifically, we generated graphs that vary in a controlled way in edge density
and graphs that vary in a controlled way in the average clustering coefficient [40].
A post-hoc analysis of this data (http://vader.lab.asu.edu/GraphAnalytics/),
reveals some interesting patterns among the statistics described in Table 1.
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Fig. 3. Graph property correlation matrix plots for the edge density dataset (left) and
the average clustering coefficient dataset (right).

The edge density dataset has 4,950 graphs and the average clustering coeffi-
cient dataset has 3,450 graphs. We compute all ten statistics from Table 1 and
compute Pearson correlation coefficients; see Fig 3. We observed high correlations
either positive (blue) or negative (yellow) in many property pairs. For example,
the average clustering coefficient is highly correlated with the global clustering
coefficient, the number of triangles, the edge density, and graph connectivity.
The average clustering coefficient dataset also shows some strong correlations.
For example the number of triangles is strongly correlated with local and global
clustering coefficients, but also with the square clustering coefficient, that last
of which is somewhat surprising.

However, these graphs were developed for a very specific purpose and cover
only limited space of all graphs with |V | = 100. Two factors likely impact these
correlations: the generator used, and the statistical properties that were con-
trolled (e.g., insuring the number of edges remained constant). For the edge
density graph set, we used a random graph generation algorithm that varies the
number of edges while keeping a uniform probability of connecting two nodes.
For the average clustering coefficient graph set, we controlled graph density and
degree distribution (power-law). This motivated us to conduct the following ex-
periments:

1. Generate all isomorphic lower order graphs (|V | ≤ 10) and analyze the re-
lationships between statistical properties. We consider this type of data as
ground truth due to its completeness.

2. Use popular graph generators to create a sample of graphs and compare
the graph property distributions of these outputs to the ground truth. This
depicts the characteristics of different graph generators in terms of graph
property coverage and helps us to think about which generator we should
use in different scenarios.

4 Analysis of Graph Statistics
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Fig. 4. Correlations between graph statistics in the ground truth for |V | = 5, 6, 7, 8, 9.
Note that for |V | = 9 there are already 274,668 points.Points are plotted to overlap,
with the largest sets plotted first (i.e., |V | = 9, ...|V | = 5) to enable us to identify the
range of statistics that can be covered with a given number of vertices.

Fig. 5. The convex hull of graph coverage across sev-
eral statistical properties. Each row (starting from
the top) represents all graphs for a fixed number of
vertices (|V | = 5...|V | = 10). Columns are pairs of
graph properties.

We compute all ten statistics
for all non-isomorphic graphs
for |V | = 4, 5, . . . , 10 (note
that for |V | = 1, 2, 3 many
of the statistics are not well
defined and there are only a
handful of graphs). We then
consider the pairwise corre-
lations between the different
statistics as the number of
vertices in the ground truth
dataset increases; see Fig 4.
To compare the coverage of
statistics with different |V |,
we scale the statistic values
into the same range. The
clustering coefficients (ACC,
GCC, SCC) are in [0, 1] by
definition and degree assorta-
tivity is in [−1, 1]. We keep
their values and ranges with-
out scaling. For the following five statistics, edge density, number of triangles,
diameter and the connectivity measures (Cv and Ce), we normalize them into
[0, 1] by dividing them by the corresponding maximum value. The last statistic,
APL, is more challenging. We compute the exact value for our ground truth
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Fig. 6. Trends in the correlations with increasing |V |: the x-axis shows the number of
vertices and the y-axis shows the correlation value for the pair of graph statistics.

datasets, but not when we use the generators, where we use the maximal value
encountered (which may not be the same as the maximum).

It is easy to see that the coverage of values expands with increasing |V |.
Figure 5 shows this pattern for three pairs of properties. This indicates that
we are more likely to find larger ranges of different statistics (when a set of
other statistics are fixed) for graphs with more vertices. With this in mind, we
consider graphs with more than 10 vertices, but this time relying on random
graph generators. Figure 6 shows how correlation values between all pairs of
statistics change when the number of vertices increases. The blue trend lines for
the ground truth data show the correlation values calculated using the set of all
possible graphs for a given number of nodes. The orange trend lines show the
correlation values calculated from graphs generated with the ER model.

For most the cells in the matrix shown in Figure 6, the correlation values seem
to converge as |V | becomes larger than 8 (both in the ground truth and the ER-
model generated graph sets). Moreover, for most of the cells, the pattern of the
change in correlation values appears to be the same for both sets. Analyzing the
trend lines of the ER-model, we observe four patterns of change in the correlation
values (also annotated in Figure 6 by an enclosing colored box): convergence to
a constant value, monotonic decrease, monotonic increase, and non-monotonic
change. There are exceptions that do not fit these patterns, e.g., (Sc, r) and in
two cases, (r, Cv) and (r, Ce), the trend lines show different patterns.

5 Graph Statistics and Graph Generators

We select four different random generators that cover most fundamental types:
the ER random graph model, the WS small-world model, the BA preferential
attachment model, and the geometric random graph model. We employ a general
strategy: start by fixing one statistic s1 and check what other statistics can vary.
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If the generators give broad distribution ranges for the other statistics, then
we fix s1. The first statistic we considered is density. We fix |V | = 50 and
fix density at different values starting from 0.01 and progressively increasing
it; for each density value we generate 100,000 graphs with that density using
all four random graph generators. Given a fixed number of vertices and fixed
number of edges, we consider the GCC statistic. We did not anticipate that fixing
density will restrict GCC as they are not strongly correlated, but our results were
surprising. We failed to find a fixed value for edge density that allows GCC to
vary across its range from 0 to 1 for any of the four graph generators, although
in the ground truth we have many such examples.

The result above implies that our generators (or the way we are using them)
are not sampling the ground-truth graph set well. Thus, before we fix one statistic
we should find out why our graph generators are not matching what we find in
the ground truth. It is easy to compare the ground-truth graph set with a set of
graphs created by one of the generators when we have the ground truth. However,
we only have the ground-truth graph set for small values of |V | (recall that
the number of non-isomorphic graphs grows very fast with increasing number
of vertices). Thus it is important to find a way to evaluate how well a graph
generator captures the ground truth, in the absence of ground truth when the
number of vertices is large. To illustrate this point, let us appeal to the ground-
truth graph set with |V | = 9 (the one used in the previous section). We now
consider how to get the most “different” types of graphs out of each random
generator, i.e., we consider how to obtain the best “coverage” of different values
for each graph statistic. We use implementations of all four generators (ER, WS,
BA, geometric) from NetworkX [21], with more details provided in the appendix.

Coverage for Ground-Truth Graph Set: For each generator, we generate
1%, 0.1% and 0.01% of the total number of graphs in ground-truth graph set
(as even these rates are difficult to obtain for large values of |V |). We evaluate
coverage in two different ways. Intuitively, we can measure the coverage of ran-
dom generators by plotting each of the graphs in ground-truth graph set as dots
in the 2D matrix of correlations and then draw the generated graph set on top
of the first plot to see how well the generator set covers the ground-truth graph
set. We color the ground-truth graph set in blue and the generated data in red.
Because the ground-truth graph set includes all possible graphs for a fixed |V |,
there is at least one blue point under each red point. Thus, the more blue we
see (as in WS and BA) the worse the coverage; see Fig 13-16.

More than just looking at the coverage, we want to test the impact of the
increase of |V | under the ER model. Specifically, we consider selecting the edge
probability p uniformly at random in the range from 0 to 1 versus selecting
values of p that correspond to the edge distribution in the ground truth (which
is much more like a normal distribution with a peak at edge density equal to
1/2). Generating graphs with uniform distribution of p is easy, whereas following
the population edge distribution is not. We do this by using the population edge
distribution as weight and then generating weighted samples between 0 and 1.
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Fig. 7. Ground truth (blue) and population edge distribution for ER (red).

From the correlation matrix for ER using the population distribution we can
see that correlations are close to the ground truth; see Fig. 7. The correlations
are worse when we use uniform distribution, but the coverage of the extreme
cases is much better; see Fig. 8. This is especially evident from the columns
corresponding to APL, diameter and Rt where the leftmost and/or rightmost
points in the plots are blue in the population experiment and red in the uniform.

Fig. 8. Ground truth (blue) and uniform at random edge distribution for ER (red).
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6 Finding Different Graphs with Identical Statistics

To find graphs that are identical over a number of graph statistics and yet are
different, we use the ground truth data for small non-isomorphic graphs. For
larger graphs, we use the graph generators together with some filters.

Finding graphs in the ground truth: For |V | ≤ 10, we directly use all
possible non-isomorphic graphs as our dataset. In fact, we can fix different com-
binations of 5 statistics and still get multiple distinct graphs. We visualize this
with figures that encapsulate the variability of one statistic in 10 slots, covering
the ranges [0.0, 0.1], [0.1, 0.2], . . . [0.9, 1] and in each slot we show a graph (if it
exists) drawn by a spring layout; see Fig. 9.

For the first experiment, we fix |V | = 9,APL ∈ (1.42, 1.47), den ∈ (0.52, 0.57),
GCC ∈ (0.5,0.6), Rt ∈ (0.15, 0.25). Since all our statistics are normalized to [0, 1]
and assortativity is in [−1, 1], each of the ten slots has a range of 0.2. We find
graphs for seven of the ten possible slots; see Fig. 9. This figure also illustrates
the output of our “same stats, different graph” generator: fix several statistics
and generate graphs that vary in another statistic.

Fig. 9. Variability in assortativity.

Similarly, for the second experiment, we fix |V | = 9, APL ∈ (1.47, 1.69),
diam = 3, Cv = 2, Ce = 2, and r ∈ (−0.22,−0.29) to obtain GCC in the range
(0, 0.8). The graphs in Figure 9 and Figure 10 are different in structure even
though they possess similar values for many properties.

Fig. 10. Variability in GCC.

As a final example, we fix |V | = 9, SCC ∈ (0.75, 0.85), ACC ∈ (0.75, 0.8),
r ∈ (-0.3, -0.2), Rt ∈ (0.35, 0.45) and find graphs with Ce from 0 to 5.

Fig. 11. Variability in edge connectivity.
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Finding graphs using graph generators: This approach relies on generating
many graphs and filtering graphs based on several fixed statistics. For the two
most important statistics of a graph, |V | and |E|, we generate all graphs with
same |V | and properly choose |E| in the following two ways:

1. uniform: select |E| uniformly from its range. This is equivalent to forcing the
edge density in the generated set to follows a uniform distribution

2. population: select |E| by forcing the edge density in the generated set to
match the distribution in the ground truth (population) graph set.

Using both edge selection strategies for all four generators, we compare the
statistics distribution to the ground truth for |V | = 9. Figure 12 illustrates how
different statistics are distributed given uniform edge sampling and population-
based edge sampling for the ER model. It shows that although the population-
based sampling approach generates more similar distribution to the ground
truth, it has a narrower coverage (larger min and smaller max) than the uniform
sampling. The WS and BA models do not provide good coverage of the various
statistics; see the Appendix for more details.

Fig. 12. Distribution of the ten statistics, including min/mean/max and standard de-
viation. Ground truth is in blue, population ER in green, uniform ER in red.

7 Discussion and Future Work

We considered how to explore the space of graphs and graph statistics that
make it possible to have multiple graphs that are identical over a number of
graph statistics, yes are clearly different. To “see” the difference it often suf-
fices to look at the drawings of the graphs. However, as graphs get larger, some
graph drawing algorithms may not allow us to distinguish differences in statis-
tics between two graphs, purely from their drawings. We recently studied how
the perception statistics such as density and ACC is affected by different graph
drawing algorithms [40]. The results confirm the intuition that some drawing al-
gorithms are more appropriate than others in aiding viewers perceive differences
between underlying graph statistics. Further work in this direction might help
ensure that differences between graphs are captured in the different drawings.
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Appendix

Generator Parameters

The ER random graph generator requires 2 parameters: the number of vertices
n and the probability for adding any edge, p. We select n = 9 and a random
value from 0 to 1 for p.

The WS small-world graph generator requires 3 parameters:, the number of
vertices n, a value k, where each node is joined with its k nearest neighbors in a
ring topology and the probability for adding any edge, p. We select n = 9, and
vary k from 2 to |V | − 1 and d a random value from 0 to 1 for p.

The BA preferential attachment model requires 2 parameters: the number of
vertices n and m edges to attach from a new node to existing nodes. We select
n = 9, and randomly choose an integer value from 1 to |V | − 1 for m.

The geometric graph generator requires 2 parameters: the number of vertices
n and a radius threshold value (if two vertices are closer than the radius an edge
is placed between them and otherwise an edge is not in the graph). We select
n = 9 and a random value from 0 to 1 for the radius.

Fig. 13. BA model for 0.01%, 0.1% and 1% with ground truth in the back, fixed |v| = 9
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Fig. 14. ER model for 0.01%, 0.1% and 1% with ground truth in the back, fixed |v| = 9

Fig. 15. geometric model for 0.01%, 0.1% and 1% with ground truth in the back, fixed
|v| = 9

Fig. 16. WS model for 0.01%, 0.1% and 1% with ground truth in the back, fixed |v| = 9


